3.5: Zero-Order Reactions (2025)

  1. Last updated
  2. Save as PDF
  • Page ID
    409161
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A zeroth-order reaction is one whose rate is independent of concentration; its differential rate law is rate = k. We refer to these reactions as zeroth order because we could also write their rate in a form such that the exponent of the reactant in the rate law is 0:

    \[\textrm{rate}=-\dfrac{\Delta[\textrm A]}{\Delta t}=k[\textrm{reactant}]^0=k(1)=k \label{14.4.1}\]

    Because rate is independent of reactant concentration, a graph of the concentration of any reactant as a function of time is a straight line with a slope of −k. The value of k is negative because the concentration of the reactant decreases with time. Conversely, a graph of the concentration of any product as a function of time is a straight line with a slope of k, a positive value.

    3.5: Zero-Order Reactions (1)

    The integrated rate law for a zeroth-order reaction also produces a straight line and has the general form

    \[[A] = [A]_0 − kt \label{14.4.2}\]

    where [A]0 is the initial concentration of reactant A. Equation \(\ref{14.4.2}\) has the form of the algebraic equation for a straight line, y = mx + b, with y = [A], mx = −kt, and b = [A]0.) In a zeroth-order reaction, the rate constant must have the same units as the reaction rate, typically moles per liter per second.

    Although it may seem counterintuitive for the reaction rate to be independent of the reactant concentration(s), such reactions are rather common. They occur most often when the reaction rate is determined by available surface area. An example is the decomposition of N2O on a platinum (Pt) surface to produce N2 and O2, which occurs at temperatures ranging from 200°C to 400°C:

    \[\mathrm{2N_2O(g)}\xrightarrow{\textrm{Pt}}\mathrm{2N_2(g)}+\mathrm{O_2(g)} \label{14.4.3}\]

    Without a platinum surface, the reaction requires temperatures greater than 700°C, but between 200°C and 400°C, the only factor that determines how rapidly N2O decomposes is the amount of Pt surface available (not the amount of Pt). As long as there is enough N2O to react with the entire Pt surface, doubling or quadrupling the N2O concentration will have no effect on the reaction rate. At very low concentrations of N2O, where there are not enough molecules present to occupy the entire available Pt surface, the reaction rate is dependent on the N2O concentration. The reaction rate is as follows:

    \[\textrm{rate}=-\dfrac{1}{2}\left (\dfrac{\Delta[\mathrm{N_2O}]}{\Delta t} \right )=\dfrac{1}{2}\left (\dfrac{\Delta[\mathrm{N_2}]}{\Delta t} \right )=\dfrac{\Delta[\mathrm{O_2}]}{\Delta t}=k[\mathrm{N_2O}]^0=k \label{14.4.4}\]

    Thus the rate at which N2O is consumed and the rates at which N2 and O2 are produced are independent of concentration. As shown in Figure \(\PageIndex{1}\), the change in the concentrations of all species with time is linear. Most important, the exponent (0) corresponding to the N2O concentration in the experimentally derived rate law is not the same as the reactant’s stoichiometric coefficient in the balanced chemical equation (2). For this reaction, as for all others, the rate law must be determined experimentally.

    3.5: Zero-Order Reactions (2)

    A zeroth-order reaction that takes place in the human liver is the oxidation of ethanol (from alcoholic beverages) to acetaldehyde, catalyzed by the enzyme alcohol dehydrogenase. At high ethanol concentrations, this reaction is also a zeroth-order reaction. The overall reaction equation is

    3.5: Zero-Order Reactions (3)

    where NAD+ (nicotinamide adenine dinucleotide) and NADH (reduced nicotinamide adenine dinucleotide) are the oxidized and reduced forms, respectively, of a species used by all organisms to transport electrons. When an alcoholic beverage is consumed, the ethanol is rapidly absorbed into the blood. Its concentration then decreases at a constant rate until it reaches zero (part (a) in Figure \(\PageIndex{3}\)). An average 70 kg person typically takes about 2.5 h to oxidize the 15 mL of ethanol contained in a single 12 oz can of beer, a 5 oz glass of wine, or a shot of distilled spirits (such as whiskey or brandy). The actual rate, however, varies a great deal from person to person, depending on body size and the amount of alcohol dehydrogenase in the liver. The reaction rate does not increase if a greater quantity of alcohol is consumed over the same period of time because the reaction rate is determined only by the amount of enzyme present in the liver. Contrary to popular belief, the caffeine in coffee is ineffective at catalyzing the oxidation of ethanol. When the ethanol has been completely oxidized and its concentration drops to essentially zero, the rate of oxidation also drops rapidly (part (b) in Figure \(\PageIndex{3}\)).

    3.5: Zero-Order Reactions (4)

    These examples illustrate two important points:

    1. In a zeroth-order reaction, the reaction rate does not depend on the reactant concentration.
    2. A linear change in concentration with time is a clear indication of a zeroth-order reaction.

    Zero-Order Reactions: https://youtu.be/64i7uYsVsSs

    3.5: Zero-Order Reactions (2025)

    FAQs

    How to calculate zero order reaction? ›

    In a zero-order reaction, the rate constant is expressed as concentration/time or M/s, where 'M' is the molarity and 's' is one second. ∴ k = mol L1 s1 is the unit of rate constant.

    Are zero order reactions rare? ›

    In reality, zero order reaction kinetics are rare.

    Are zero order reactions possible? ›

    From experiments we know that zero order reactions are possible but molecularity can never be zero as ′(a+b)′ can never be zero. Hence, zero molecularity is not possible.

    How do you know if a reaction is zero order? ›

    If an increase in reactant increases the half life, the reaction has zero-order kinetics. If it has no effect, it has first-order kinetics. If the increase in reactant decreases the half life, the reaction has second-order kinetics.

    How to calculate order of reaction? ›

    In order to determine the reaction order, the power-law form of the rate equation is generally used. The expression of this form of the rate law is given by r = k[A]x[B]y.

    Is zero order reaction multistep? ›

    Answer: Zero order reactions means the rate of the reaction does not depend on the reactant concentration. But the reactants are converted to product. So this reaction takes place in multiple steps.

    How much time is required for zero order reaction? ›

    This reaction is the zero-order reaction. Thus, the time required for the completion of the zero-order reaction is [R0]/k.

    Why zero order reaction is never elementary? ›

    Explanation: a zero order reaction is never an elementary reaction since zero order in elementary States that molecular is zero which is never possible as molecularly is the no of species colliding or reacting to form a product.

    Are higher order 3 reactions rare? ›

    - Therefore higher order (>3) reactions are rare due to Low probability of simultaneous collision of all the reacting species.

    What is a real life example of a zero order reaction? ›

    Lastly, a zero-order reaction is one in which the rate of reaction is independent of the concentration of one or more reactants. An example of this type of reaction is the breakdown of aspirin in the body. The rate of reaction remains constant even as the concentration of aspirin decreases due to metabolism.

    What happens if you double a zero order reaction? ›

    As we know that, for zero order reaction the rate of reaction is constant and does not change with the concentration of reactant. So, doubling concentration of reactant a will have no affect on the rate of reaction. However, for second order the reaction rate is proportional to the square of concentration of reactant.

    What drugs are zero order kinetics? ›

    In contrast to methanol, other specific medications that show zero-order elimination are salicylates, omeprazole, fluoxetine, phenytoin, and cisplatin, which, when ingested at toxic levels, achieves a higher concentration of the substance within the body over time versus the same amount of the substance that uses first ...

    What are the conditions for a zero order reaction? ›

    Definition. “A zero-order reaction is a chemical reaction in which the rate remains constant as the concentration of the reactants rises or falls.” The rate of these reactions is always equal to the rate constant of the specific reactions since the rate is proportional to the 0th power of the concentration of reactants ...

    What is the average rate of reaction? ›

    Average rate of reaction = Change in concentration Time rate ( r ) = Δx Δt. Sign of average rate of reaction: When the rate of concentration of reactant decreases then the average rate of reaction will be negative. When the rate of concentration of product increases then the average rate of reaction will be positive.

    Are zero order reactions always complex? ›

    Zero order reactions are complex reactions. A reaction having first order may be either elementary or complex reaction. A reaction having second order reaction must have molecularity =2. A reaction with molecularity =2 must be a second order reaction.

    What is the equation for the zero order rate law? ›

    Zero-Order Reactions
    Zero-OrderSecond-Order
    rate lawrate = krate = k[A]2
    units of rate constantM s1M1 s1
    integrated rate law[A] = −kt + [A]01[A]=kt+(1[A]0)
    plot needed for linear fit of rate data[A] vs. t1[A] vs. t
    2 more rows
    Sep 12, 2022

    What is the equation of line for zero order reaction? ›

    For a zero order reaction, the graph of [A] vs time will be linear. The slope of the graph is equal to -k. This aligns with the zero order integrated rate law, [A]=-kt+[A]o, as it takes the form y=mx+c, where -k is the slope and [A]o (the initial concentration) is the y-intercept.

    What is the relationship between t7 8 and t1 2 for zero order reaction? ›

    Therefore, the time required for a reactant to decrease to half of its initial concentration (t1/2) is directly related to the time required for the reactant to decrease to one-eighth of its initial concentration (t7/8). The time required for t7/8 is 3.5 times the time required for t1/2 in a zero-order reaction.

    What is R0 in chemical kinetics? ›

    A zero-order reaction is one in which the rate of the reaction is proportional to the 0th power of the reactant concentration. Consider the response. RP. d[R] / dt = k[R]o. Because any number raised to the power of zero equals one, R0 equals one.

    References

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Reed Wilderman

    Last Updated:

    Views: 6052

    Rating: 4.1 / 5 (52 voted)

    Reviews: 83% of readers found this page helpful

    Author information

    Name: Reed Wilderman

    Birthday: 1992-06-14

    Address: 998 Estell Village, Lake Oscarberg, SD 48713-6877

    Phone: +21813267449721

    Job: Technology Engineer

    Hobby: Swimming, Do it yourself, Beekeeping, Lapidary, Cosplaying, Hiking, Graffiti

    Introduction: My name is Reed Wilderman, I am a faithful, bright, lucky, adventurous, lively, rich, vast person who loves writing and wants to share my knowledge and understanding with you.