In advance of our scheduled launch of the upcoming Journal “Aperture” from the Organization of Human Brain Mapping (OHBM), we wanted to get up close with the first Editor-in-Chief of the Journal - Tonya White. Tonya is currently an Associate professor in the Department of Radiology and Nuclear Medicine and Department of Child and Adolescent Psychiatry in the Erasmus Medical center in Rotterdam, Netherlands. We discussed her personal journey in Science and her vision for the Journal.
Nabin Koirala (NK): Thank you so much for making time for this interview. To start, could you please introduce yourself to general readers who may not be scientists?
Tonya White (TW): That's always an interesting question because I have a number of different hats. I could say that I'm a developmental neuroscientist, a child and adolescent psychiatrist, a pediatrician or an electrical engineer. But what I've been mostly doing currently is what's called pediatric population neuroscience, which is actually the intersection between epidemiology and developmental neuroscience. The neuroimaging program I came to set up in Rotterdam is a large population-based study of child development. We’re currently collecting and evaluating more than 8000 MRI scans from children at three time points. Through the so called “Generation R Study” nearly 10,000 mothers who were pregnant between 2002 and 2006 were approached to participate in the study and the imaging is nested into a multifaceted epidemiologic study looking at many different aspects of child development.
NK:Wow, that's a large sample. So, what do you actually aim to find out from this huge cohort of 8000 scans?
TW:One of the things that's exciting about population imaging studies is that they have a direct translation into public health. So you can look at things such as exposures during pregnancies in mothers who smoke or don't take enough folate or who use cannabis and what happens in the brain because of these different exposures. Another aspect is that most studies using clinical populations look at the extremes within a distribution. Say, those who have a clinical diagnosis versus an overly healthy control group. Whereas, with population-based studies, you can also study individuals with subclinical symptoms i.e. who don't meet an actual clinical diagnosis but have some symptoms. Then you can ask the question, does the underlying neurobiology follow a continuum parallel with the clinical symptoms? If you have more symptoms, do you have more differences in the brain? Or are these differences related to a dose effect?
Lately, I've been really quite interested in the role of stochastic processes in development. We talk a lot about nature and nurture, but we don't often talk about chance. If you go back to the early 20thcentury, you see a whole dispute between Niels Bohr and Albert Einstein on the role of deterministic processes. So, I think we should also start a conversation of stochastic processes within the field of neuroscience.
NK: Thinking ofNature and Nurture, how much genetic influence do you think there is in brain development?
TW:I believe it's largely driven by genes. I think genes have a huge effect in terms of brain development and the other factors like the environment and stochastic processes have more subtle but real and measurable effects. As an example, in several of our studies, what we've looked into is the polygenic risk for different psychiatric disorders; we’ve shown several genes contributing to psychopathology.
NK:This is fascinating, but I have to admit I am even more curious about your Journey in Science. How did you end up doing neuroscience from being an Electrical Engineer?
TW:Oh, that’s a long but I guess a good story. Anyway, I’ll try to shorten it as much as I can. My undergraduate degree was in electrical engineering with a focus in biomedical engineering. I started engineering because I was good at math and my father, who was an engineer, encouraged my older brother, myself, and my younger sister to go into engineering. During my bachelors, about half the people in my engineering class were looking into jobs related to defense. But I was rather interested in medicine and the human side of things. So, during my graduate years, I started looking for options and my interest at first was in bioengineering and working with prosthetic devices. This might also have to do with the fact that I really liked my summer job working on the Utah artificial arm during my undergraduate years. So, while continuing my graduate program in Engineering at the University of Illinois, I began medical school. By my third year of medical school, I would have said that I was planning to go into pediatrics. However, during my fourth year of medical school, I had a chance to spend a month at Brown University, rotating through child Psychiatry at Bradley hospital. After that, I became very excited about child and adolescent psychiatry. I went back to my Dean and requested that he re-write his letter for me to apply to the so-calledtriple board program,which involved pediatrics, psychiatry and child psychiatry. It’s a natural step to become interested in the brain through psychiatry.
Because of my clinical experience during my residency, I became interested in autism. I went to the University of Iowa for a neuroimaging postdoctoral research fellowship with Nancy Andreasen on schizophrenia research with the goal of also being able to work with Joe Piven on neuroimaging in autism spectrum disorders. But shortly after I moved, Joe moved to North Carolina, so I then focused on schizophrenia and moved to the University of Minnesota to set up a youth psychosis program. I spent about four days a week at the Center for Magnetic Resonance Research at the University of Minnesota. Then in 2009 I had the unique opportunity to set up the neuroimaging program in Rotterdam.
NK:Wow! that’s quite a story. So, having three different degrees, how much do you think this vast intersection of knowledge has helped you in your academic career?
TW:I can say engineering has been extremely helpful, particularly for the intersection between neuroimaging and medicine. To give an example, there are lots of new methods that are proposed regularly. Most of them are cool, and sometimes neuroscientists apply them without actually thinking about the assumptions from a neuroscience perspective. So, the engineering degree has given me the ability to understand what's involved in the assumptions of these methods, to have a different overarching view to better apply them in addressing my research questions. Even though I do think that having in-depth knowledge in multiple domains is very helpful, I also like the kind of hybrid courses currently springing up in universities, like medical technology, computational neuroscience etc. I believe these courses create bridges between medicine and different aspects of technology.
NK:Maybe one last question regarding your academic journey so far. You were a faculty member in Minnesota for around eight years. What made you switch to this position in another continent?
TW:I would say a combination of things. A key factor was the generation R Study, which I thought was fascinating. Being able to infuse neuroimaging in that study seemed like a great opportunity. Among other factors, there was a lack of NIH funding under George W Bush. NIMH funding during his period went down to as low as 3-5%. I also had a great experience living in Europe during five years of my childhood with my parents in Germany. So I think it was more the opportunity in Rotterdam that had a pull, as I did very much enjoy being at the University of Minnesota and being close to family.
NK:So let’s focus on Aperture, could you tell us a bit more about its formation: the concept behind it and what this new journal brings in the sea of others? What’s different about it?
TW:I was the secretary on the OHBM Council when it was first introduced as a possibility by, I believe, Martin Lindquist. He said “wouldn't it be nice if we had a mechanism to publish these educational articles (the COBIDAS document) that are good for the OHBM community and the wider neuroimaging scientific community?” JB Poline then picked up on that and, together with Peter Bandettini and a group that now form the Aperture Oversight Committee, became the driving force behind Aperture.
As to what sets Aperture apart, there's a couple of different aspects. One is the promotion of open science. The journal itself will be open, but it’s not just the research articles that could be open access but also what we callresearch objectslike scripts, data sets, educational materials etc. Even educational material that you would normally see at one of the educational courses in OHBM could be embedded in something like Jupyter notebooks etc. Second is the low publication cost. Given the very high ‘open-access’ publication costs in many journals, these costs can be prohibitive for researchers in low- and middle-income countries. Hence, it is getting more and more difficult to publish research from those countries. I think we're all together in this whole research mission to understand the brain in the hope that people's lives will be improved, so an initiative in that direction is definitely one of the primary goals of Aperture.
NK:Great. Coming from one of those low-income countries, I can totally relate to what you are saying. Based on an OHBM survey on Aperture, a large proportion of participants said that they would be mostly interested in publishing codes or tutorials. How do you plan to review and manage that given the updates needed for those articles?
TW:Science is dynamic, it will change. So, we are more focused on the initial review process rather than the eventual updates. Major updates could be submitted as updated research objects to Aperture and given a new DOI. We've discussed several ideas on how to review something like a code or a script. Even though there is not yet a concrete plan, one of the things I've been thinking is that perhaps it would be good to have teams who would get together to check the scripts and run the code and see if it does what it says it can do and what issues may arise while testing the code. We will start with some test cases to try some of these ideas from our editorial team and see how it goes. But the goal is eventually these types of research objects will be published and receive a DOI.
NK:That sounds fantastic. Among one of the active debates that's going on in science these days is about diversity and inclusion. Do you have some plans to enhance that in Aperture?
TW:Definitely. Step one, I will be looking at diversity within our editorial board, making sure that we have a diverse group covering different domains. And then it's important to consider diversity not only in terms of gender, race, ethnicity, sexual orientation, gender identity, disability, language, etc. but also the diversity in methodologies and types of approaches to science. Diversity is perhaps one of our greatest gifts that we currently have in academics, hence I would definitely try to promote that from every aspect possible.
NK:As an editor-in-chief have you envisioned a certain direction for the Journal in the next five years or so?
TW :One of the advantages of being under the umbrella of OHBM is that we can pursue only those research objects of high quality. It might not be straight forward at the beginning given we don’t yet have an impact factor or indexing in PubMed. We're working together to provide a venue for people to submit types of research objects that may not fit in other types of journals. The general goal would be to establish Aperture as a quality journal which is not for profit, and becomes a platform for diverse articles relevant to the field of neuroimaging.
NK:Have you thought about a particular model of review process? Would the reviewers be open after acceptance like in Frontiers? Would the process be double-blinded?
TW:We've discussed this and there are many advantages and disadvantages of both processes. For example, someone junior in the field who is reviewing a research object from someone more senior in the field may not feel comfortable publishing their name. So, for now the idea is to make it optional for the reviewer, having the ability to opt out of being open. Regarding the double-blinded process, we have not yet decided upon that.
NK:Before we conclude I would like to ask some personal questions which I am pretty sure is interesting for many of us. Let’s start with your hobbies?
TW:Actually, this afternoon I am planning to go climbing at a climbing hall. But apart from that probably the thing I most like to do (in the winter) is to ski. I'm a member of a cross country ski group. Here we go roller skiing in the Netherlands. I also enjoy biking and most things outdoors like canoeing, hiking etc., which I do a lot with my family. I’d rather listen to lots of audio books than read them. Because I read so much for my work, sitting and reading books feels more like work than free time, so I just listen to audiobooks while doing other things. Actually, listening to books on tape in Dutch has really helped to improve my Dutch language skills.
NK:Are you already a fluent speaker?
TW:Much of my interactions with my Dutch colleagues is in Dutch, but I am no way near perfect. Still a lot to learn.
NK:Having a chance of working both in the US and Europe, do you feel that there are some differences in terms of research culture across the continents?
TW:Most of the important things are very much the same, but there are things that are quite different. For example, most of the research in the US is done by the PIs (Principle Investigators) and research assistants, at least on the medical school side of things. But here in Europe most of the research is driven by PhD students. Also in Europe during summer the population of the research unit decreases by 75%, as most people go on vacation for extended periods of time and they're expected to do so. You are interviewing me in the summer[laughs]. I like the quietness of the summer to get work done and then I go on ski vacations in the winter.
NK:Being an expert in the Brain, I am very curious to know: if you were to be a brain region, which one would it be?
TW:What a great question! I think probably the hippocampus because it integrates multimodal information. And that's kind of sitting between multiple disciplines. That's kind of what I do. I actually believe more in connected regions rather than one specific brain region, but I guess I can't call connectivity a region, can I?[Laughs]. Probably another favorite would be an action potential. Potential for action related to Aperture.[Laughs]
NK:Three key ideas for early career researchers?
TW:1.Think outside the box. Because you should always remember that if we, as senior researchers, had already figured it out, you wouldn't have a position. So if we continue doing things the same way that we're doing, it's possible that we miss something. So make sure that you think outside the box.
2.Persistence. As an example I would say, as a researcher you need to get used to rejection. When your first grant gets rejected and another grant after that, the ones who persist are the ones who are going to be successful.
3.Play well on the sandbox. We're all in this together to hopefully make life and this society better for all of us. So we all should remind ourselves of the real reason why we do science.
NK:Great suggestions. Thanks again for taking time and making it such a great interview.
Learn more about Aperturehere.