2.2: Simplifying Algebraic Expressions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    18334
    • 2.2: Simplifying Algebraic Expressions (1)
    • Anonymous
    • LibreTexts

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    Learning Objectives

    • Apply the distributive property to simplify an algebraic expression.
    • Identify and combine like terms.

    Distributive Property

    The properties of real numbers are important in our study of algebra because a variable is simply a letter that represents a real number. In particular, the distributive property states that given any real numbers \(a, b,\) and \(c\),

    \[\color{Cerulean}{a}\color{black}{(b+c)=}\color{Cerulean}{a}\color{black}{b+}\color{Cerulean}{a}\color{black}{c}\]

    This property is applied when simplifying algebraic expressions. To demonstrate how it is used, we simplify \(2(5−3)\) in two ways, and observe the same correct result.

    Certainly, if the contents of the parentheses can be simplified, do that first. On the other hand, when the contents of parentheses cannot be simplified, multiply every term within the parentheses by the factor outside of the parentheses using the distributive property. Applying the distributive property allows you to multiply and remove the parentheses.

    Example \(\PageIndex{1}\)

    Simplify:

    \(5(7y+2)\).

    Solution:

    Multiply \(5\) times each term inside the parentheses.

    \(\begin{aligned}\color{Cerulean}{5}\color{black}{(7y+2)}&=\color{Cerulean}{5}\color{black}{\cdot 7y+}\color{Cerulean}{5}\color{black}{\cdot 2} \\ &=35y+10 \end{aligned}\)

    Answer:

    \(35y+10\)

    Example \(\PageIndex{2}\)

    Simplify:

    \(−3(2x^{2}+5x+1)\).

    Solution:

    Multiply \(−3\) times each of the coefficients of the terms inside the parentheses.

    Answer:

    \(-6x^{2}-15x-3\)

    Example \(\PageIndex{3}\)

    Simplify:

    \(5(−2a+5b)−2c\).

    Solution:

    Apply the distributive property by multiplying only the terms grouped within the parentheses by \(5\).

    2.2: Simplifying Algebraic Expressions (2)

    Figure \(\PageIndex{1}\)

    Answer:

    \(-10a+25b-2c\)

    Because multiplication is commutative, we can also write the distributive property in the following manner:

    \[(b+c)a=ba+ca\]

    Example \(\PageIndex{4}\)

    Simplify:

    \((3x−4y+1)⋅3\).

    Solution:

    Multiply each term within the parentheses by \(3\).

    \(\begin{aligned} (3x-4y+1)\cdot 3&=3x\color{Cerulean}{\cdot 3}\color{black}{-4y}\color{Cerulean}{\cdot 3}\color{black}{+1}\color{Cerulean}{\cdot 3} \\ &=9x-12y+3 \end{aligned}\)

    Answer:

    \(9x-12y+3\)

    Division in algebra is often indicated using the fraction bar rather than with the symbol (\(÷\)). And sometimes it is useful to rewrite expressions involving division as products:

    \(\begin{array}{c}{\color{black}{\frac{x}{\color{Cerulean}{5}}=\frac{1x}{5}=\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot x}}} \\{\color{black}{\frac{\color{Cerulean}{3}\color{black}{ab}}{\color{Cerulean}{7}}=\frac{3}{7}\cdot \frac{ab}{1}=\color{Cerulean}{\frac{3}{7}}\color{black}{\cdot ab}}}\\{\frac{x+y}{\color{Cerulean}{3}}=\frac{1}{3}\cdot \frac{(x+y)}{1}=\color{Cerulean}{\frac{1}{3}}\color{black}{\cdot (x+y)}} \end{array}\)

    Rewriting algebraic expressions as products allows us to apply the distributive property.

    Example \(\PageIndex{5}\)

    Divide:

    \(\frac{25x^{2}-5x+10}{5}.

    Solution:

    First, treat this as \(\frac{1}{5}\) times the expression in the numerator and then distribute.

    \(\begin{aligned} \frac{25x^{2}-5x+10}{\color{Cerulean}{5}}&=\frac{1}{5}\cdot\frac{(25x^{2}-5x+10)}{1} \\ &=\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot (25x^{2}-5x+10)} &\color{Cerulean}{Multiply\:each\:term\:by\:\frac{1}{5}.} \\ &=\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot 25x^{2}-}\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot 5x+}\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot 10}&\color{Cerulean}{Simplify.} \\ &=5x^{2}-x+2 \end{aligned}\)

    Alternate Solution:

    Think of \(5\) as a common denominator and divide each of the terms in the numerator by \(5\):

    \(\begin{aligned} \frac{25x^{2}-5x+10}{5}&=\frac{25x^{2}}{5}-\frac{5x}{5}+\frac{10}{5} \\ &=5x^{2}-x+2 \end{aligned}\)

    Answer:

    \(5x^{2}-x+2\)

    We will discuss the division of algebraic expressions in more detail as we progress through the course.

    Exercise \(\PageIndex{1}\)

    Simplify:

    \(\frac{1}{3}(−9x+27y−3)\).

    Answer

    \(-3x+9y-1\)

    Combining Like Terms

    Terms with the same variable parts are called like terms, or similar terms. Furthermore, constant terms are considered to be like terms. If an algebraic expression contains like terms, apply the distributive property as follows:

    \(\begin{array}{c}{2\color{Cerulean}{a}\color{black}{+3}\color{Cerulean}{a}\color{black}{=(2+3)}\color{Cerulean}{a}\color{black}{=5}\color{Cerulean}{a}}\\{7\color{Cerulean}{xy}\color{black}{-5}\color{Cerulean}{xy}\color{black}{=(7-5)}\color{Cerulean}{xy}\color{black}{=2}\color{Cerulean}{xy}}\\{10\color{Cerulean}{x^{2}}\color{black}{+4}\color{Cerulean}{x^{2}}\color{black}{-6}\color{Cerulean}{x^{2}}\color{black}{=(10+4-6)}\color{Cerulean}{x^{2}}\color{black}{=8}\color{Cerulean}{x^{2}}} \end{array}\)

    In other words, if the variable parts of terms are exactly the same, then we may add or subtract the coefficients to obtain the coefficient of a single term with the same variable part. This process is called combining like terms. For example,

    \(3a^{2}b+2a^{2}b=5a^{2}b\)

    Notice that the variable factors and their exponents do not change. Combining like terms in this manner, so that the expression contains no other similar terms, is called simplifying the expression. Use this idea to simplify algebraic expressions with multiple like terms.

    Example \(\PageIndex{6}\)

    Simplify:

    \(3a+2b−4a+9b\).

    Solution:

    Identify the like terms and combine them.

    \(\begin{aligned} 3a+2b-4a+9b&=3\color{Cerulean}{a}\color{black}{-4}\color{Cerulean}{a}\color{black}{+2}\color{OliveGreen}{b}\color{black}{+9}\color{OliveGreen}{b}&\color{Cerulean}{Commutative\:property\:of\:addition} \\ &=-1a+11b &\color{Cerulean}{Combine\:like\:terms.} \\ &=-a+11b \end{aligned}\)

    Answer:

    \(-a+11b\)

    In the previous example, rearranging the terms is typically performed mentally and is not shown in the presentation of the solution.

    Example \(\PageIndex{7}\)

    Simplify:

    \(x^{2}+3x+2+4x^{2}−5x−7\).

    Solution:

    Identify the like terms and add the corresponding coefficients.

    \(\begin{array}{lc}{\color{Cerulean}{\underline{1x^{2}}}\color{black}{+}\color{OliveGreen}{\underline{\underline{3x}}}\color{black}{+\underline{\underline{\underline{2}}}+}\color{Cerulean}{\underline{4x^{2}}}\color{black}{-}\color{OliveGreen}{\underline{\underline{5x}}}\color{black}{-\underline{\underline{\underline{7}}}}}&{\color{Cerulean}{Identify\:like\:terms.}}\\{=5x^{2}-2x-5}&{\color{Cerulean}{Combine\:like\:terms.}}\end{array}\)

    Answer:

    \(5x^{2}-2x-5\)

    Example \(\PageIndex{8}\)

    Simplify:

    \(5x^{2}y−3xy^{2}+4x^{2}y−2xy^{2}\).

    Solution:

    Remember to leave the variable factors and their exponents unchanged in the resulting combined term.

    \(\begin{array}{l}{\underline{5x^{2}y}-\underline{\underline{3xy^{2}}}+\underline{4x^{2}y}-\underline{\underline{2xy^{2}}}}\\{=9x^{2}y-5xy^{2}} \end{array}\)

    Answer:

    \(9x^{2}y-5xy^{2}\)

    Example \(\PageIndex{9}\)

    Simplify:

    \(\frac{1}{2}a−\frac{1}{3}b+\frac{3}{4}a+b\).

    To add the fractional coefficients, use equivalent coefficients with common denominators for each like term.

    \(\begin{aligned} \frac{1}{2}a-\frac{1}{3}b+\frac{3}{4}a+1b&=\frac{1}{2}a+\frac{3}{4}a-\frac{1}{3}b+1b \\ &=\frac{2}{4}a+\frac{3}{4}a-\frac{1}{3}b+\frac{3}{3}b \\&=\frac{5}{4}a+\frac{2}{3}b \end{aligned}\)

    Answer:

    \(\frac{5}{4}a+\frac{2}{3}b\)

    Example \(\PageIndex{10}\)

    Simplify:

    \(−12x(x+y)^{3}+26x(x+y)^{3}\).

    Solution:

    Consider the variable part to be \(x(x+y)^{3}\). Then this expression has two like terms with coefficients \(−12\) and \(26\).

    \(\begin{aligned} &-12x(x+y)^{3}+26x(x+y)^{3} &\color{Cerulean}{Add\:the\:coefficients.} \\ &=14x(x+y)^{3} \end{aligned}\)

    Answer:

    \(14x(x+y)^{3}\)

    Exercise \(\PageIndex{2}\)

    Simplify:

    \(−7x+8y−2x−3y\).

    Answer

    \(−9x+5y\)

    Distributive Property and Like Terms

    When simplifying, we will often have to combine like terms after we apply the distributive property. This step is consistent with the order of operations: multiplication before addition.

    Example \(\PageIndex{11}\)

    Simplify:

    \(2(3a−b)\)−\(7(−2a+3b)\).

    Solution:

    Distribute \(2\) and \(−7\) and then combine like terms.

    2.2: Simplifying Algebraic Expressions (3)

    Figure \(\PageIndex{2}\)

    Answer:

    \(20a-23b\)

    In the example above, it is important to point out that you can remove the parentheses and collect like terms because you multiply the second quantity by \(−7\), not just by \(7\). To correctly apply the distributive property, think of this as adding \(−7\) times the given quantity, \(2(3a−b)+(−7)(−2a+3b)\).

    Exercise \(\PageIndex{3}\)

    Simplify:

    \(−5(2x−3)+7x\).

    Answer

    \(-3x+15\)

    Often we will encounter algebraic expressions like \(+(a+b)\) or \(−(a+b)\). As we have seen, the coefficients are actually implied to be \(+1\) and \(−1\), respectively, and therefore, the distributive property applies using \(+1\) or \(–1\) as the factor. Multiply each term within the parentheses by these factors:

    \[+(a+b)=+1(a+b)=(+1)a+(+1)b=a+b\]

    \[-(a+b)=-1(a+b)=(-1)a+(-1)b=-a-b\]

    This leads to two useful properties,

    \[+(a+b)=a+b\]

    \[-(a+b)=-a-b\]

    Example \(\PageIndex{12}\)

    Simplify:

    \(5x−(−2x^{2}+3x−1)\).

    Solution:

    Multiply each term within the parentheses by \(−1\) and then combine like terms.

    2.2: Simplifying Algebraic Expressions (4)

    Figure \(\PageIndex{3}\)

    Answer:

    \(2x^{2}+2x+1\)

    When distributing a negative number, all of the signs within the parentheses will change. Note that \(5x\) in the example above is a separate term; hence the distributive property does not apply to it.

    Example \(\PageIndex{13}\)

    Simplify:

    \(5−2(x^{2}−4x−3)\).

    Solution:

    The order of operations requires that we multiply before subtracting. Therefore, distribute \(−2\) and then combine the constant terms. Subtracting \(5 − 2\) first leads to an incorrect result, as illustrated below:

    \(\begin{array}{c|c}{\underline{\color{red}{Incorrect!}}}&{\underline{\color{Cerulean}{Correct!}}}\\{\begin{aligned} &\color{red}{5-2}\color{black}{(x^{2}-4x-3)} \\ &=\color{red}{3}\color{black}{(x^{2}-4x-3)}\\&=3x^{2}-12x-9\quad\color{red}{x} \end{aligned}}&{\begin{aligned}&5\color{Cerulean}{-2}\color{black}{(x^{2}-4x-3)} \\ &=5\color{Cerulean}{-2}\color{black}{x^{2}}\color{Cerulean}{+8}\color{black}{x}\color{Cerulean}{+6} \\ &=-2x^{2}+8x+11\quad\color{Cerulean}{\checkmark} \end{aligned}} \end{array}\)

    Answer:

    \(-2x^{2}+8x+11\)

    Note

    It is worth repeating that you must follow the order of operations: multiply and divide before adding and subtracting!

    Exercise \(\PageIndex{4}\)

    Simplify:

    \(8−3(−x^{2}+2x−7)\).

    Answer

    \(3x^{2}-6x+29\)

    Example \(\PageIndex{14}\)

    Subtract \(3x−2\) from twice the quantity \(−4x^{2}+2x−8\).

    Solution:

    First, group each expression and treat each as a quantity:

    \((3x-2)\qquad\text{and}\qquad (-4x^{2}+2x-8)\)

    Next, identify the key words and translate them into a mathematical expression.

    2.2: Simplifying Algebraic Expressions (5)

    Figure \(\PageIndex{4}\)

    Finally, simplify the resulting expression.

    Answer:

    \(-8x^{2}+x-14\)

    Key Takeaways

    • The properties of real numbers apply to algebraic expressions, because variables are simply representations of unknown real numbers.
    • Combine like terms, or terms with the same variable part, to simplify expressions.
    • Use the distributive property when multiplying grouped algebraic expressions, \(a(b+c)=ab+ac\).
    • It is a best practice to apply the distributive property only when the expression within the grouping is completely simplified.
    • After applying the distributive property, eliminate the parentheses and then combine any like terms.
    • Always use the order of operations when simplifying.

    Exercise \(\PageIndex{5}\) Distributive Property

    Multiply.

    1. \(3(3x−2)\)
    2. \(12(−5y+1)\)
    3. \(−2(x+1)\)
    4. \(5(a−b)\)
    5. \(\frac{5}{8}(8x−16)\)
    6. \(−\frac{3}{5}(10x−5)\)
    7. \((2x+3)⋅2\)
    8. \((5x−1)⋅5\)
    9. \((−x+7)(−3)\)
    10. \((−8x+1)(−2)\)
    11. \(−(2a−3b)\)
    12. \(−(x−1)\)
    13. \(\frac{1}{3}(2x+5)\)
    14. \(−\frac{3}{4}(y−2)\)
    15. \(−3(2a+5b−c)\)
    16. \(−(2y^{2}−5y+7)\)
    17. \(5(y^{2}−6y−9)\)
    18. \(−6(5x^{2}+2x−1)\)
    19. \(7x^{2}−(3x−11)\)
    20. \(−(2a−3b)+c\)
    21. \(3(7x^{2}−2x)−3\)
    22. \(\frac{1}{2}(4a^{2}−6a+4)\)
    23. \(−\frac{1}{3}(9y^{2}−3y+27)\)
    24. \((5x^{2}−7x+9)(−5)\)
    25. \(6(\frac{1}{3}x^{2}−\frac{1}{6}x+\frac{1}{2})\)
    26. \(−2(3x^{3}−2x^{2}+x−3)\)
    27. \(\frac{20x+30y−10z}{10}\)
    28. \(\frac{−4a+20b−8c}{4}\)
    29. \(\frac{3x^{2}−9x+81}{−3}\)
    30. \(\frac{15y^{2}+20y−5}{5}\)
    Answer

    1. \(9x−6 \)

    3. \(−2x−2 \)

    5. \(5x−10 \)

    7. \(4x+6 \)

    9. \(3x−21 \)

    11. \(−2a+3b\)

    13. \(\frac{2}{3}x+\frac{5}{3}\)

    15. \(−6a−15b+3c\)

    17. \(5y^{2}−30y−45\)

    19. \(7x^{2}−3x+11\)

    21. \(21x^{2}−6x−3\)

    23. \(−3y^{2}+y−9\)

    25. \(2x^{2}−x+3\)

    27. \(2x+3y−z\)

    29. \(−x^{2}+3x−27\)

    Exercise \(\PageIndex{6}\) Distributive Property

    Translate the following sentences into algebraic expressions and then simplify.

    1. Simplify two times the expression \(25x^{2}−9\).
    2. Simplify the opposite of the expression \(6x^{2}+5x−1\).
    3. Simplify the product of \(5\) and \(x^{2}−8\).
    4. Simplify the product of \(−3\) and \(−2x^{2}+x−8\).
    Answer

    1. \(50x^{2}−18\)

    3. \(5x^{2}−40\)

    Exercise \(\PageIndex{7}\) Combining Like Terms

    Simplify.

    1. \(2x−3x\)
    2. \(−2a+5a−12a\)
    3. \(10y−30−15y\)
    4. \(\frac{1}{3}x+\frac{5}{12}x\)
    5. \(−\frac{1}{4}x+\frac{4}{5}+\frac{3}{8}x\)
    6. \(2x−4x+7x−x\)
    7. \(−3y−2y+10y−4y\)
    8. \(5x−7x+8y+2y\)
    9. \(−8α+2β−5α−6β\)
    10. \(−6α+7β−2α+β\)
    11. \(3x+5−2y+7−5x+3y\)
    12. \(–y+8x−3+14x+1−y\)
    13. \(4xy−6+2xy+8\)
    14. \(−12ab−3+4ab−20\)
    15. \(\frac{1}{3}x−\frac{2}{5}y+\frac{2}{3}x−\frac{3}{5}y\)
    16. \(\frac{3}{8}a−\frac{2}{7}b−\frac{1}{4}a+\frac{3}{14}b\)
    17. \(−4x^{2}−3xy+7+4x^{2}−5xy−3\)
    18. \(x^{2}+y^{2}−2xy−x^{2}+5xy−y^{2}\)
    19. \(x^{2}−y^{2}+2x^{2}−3y\)
    20. \(\frac{1}{2}x^{2}−\frac{2}{3}y^{2}−\frac{1}{8}x^{2}+\frac{1}{5}y^{2}\)
    21. \(\frac{3}{16}a^{2}−\frac{4}{5}+\frac{1}{4}a^{2}−\frac{1}{4}\)
    22. \(\frac{1}{5}y^{2}−\frac{3}{4}+\frac{7}{10}y^{2}−\frac{1}{2}\)
    23. \(6x^{2}y−3xy^{2}+2x^{2}y−5xy^{2}\)
    24. \(12x^{2}y^{2}+3xy−13x^{2}y^{2}+10xy\)
    25. \(−ab^{2}+a^{2}b−2ab^{2}+5a^{2}b\)
    26. \(m^{2}n^{2}−mn+mn−3m^{2}n+4m^{2}n^{2}\)
    27. \(2(x+y)^{2}+3(x+y)^{2}\)
    28. \(\frac{1}{5}(x+2)^{3}−\frac{2}{3}(x+2)^{3}\)
    29. \(−3x(x^{2}−1)+5x(x^{2}−1)\)
    30. \(5(x−3)−8(x−3)\)
    31. \(−14(2x+7)+6(2x+7)\)
    32. \(4xy(x+2)^{2}−9xy(x+2)^{2}+xy(x+2)^{2}\)
    Answer

    1. \(−x\)

    3. \(−5y−30\)

    5. \(\frac{1}{8}x+\frac{4}{5}\)

    7. \(y\)

    9. \(−13α−4β\)

    11. \(−2x+y+12\)

    13. \(6xy+2\)

    15. \(x−y\)

    17. \(−8xy+4\)

    19. \(3x^{2}−y^{2}−3y\)

    21. \(\frac{7}{16}a^{2}−\frac{21}{20}\)

    23. \(8x^{2}y−8xy^{2}\)

    25. \(6a^{2}b−3ab^{2}\)

    27. \(5(x+y)^{2}\)

    29. \(2x(x^{2}−1)\)

    31. \(−8(2x+7)\)

    Exercise \(\PageIndex{8}\) Mixed Practice

    Simplify.

    1. \(5(2x−3)+7\)
    2. \(−2(4y+2)−3y\)
    3. \(5x−2(4x−5)\)
    4. \(3−(2x+7)\)
    5. \(2x−(3x−4y−1)\)
    6. \((10y−8)−(40x+20y−7)\)
    7. \(\frac{1}{2}y−\frac{3}{4}x−(\frac{2}{3}y−\frac{1}{5}x)\)
    8. \(\frac{1}{5}a−\frac{3}{4}b+\frac{3}{15}a−\frac{1}{2}b\)
    9. \(\frac{2}{3}(x−y)+x−2y\)
    10. \(−\frac{1}{3}(6x−1)+\frac{1}{2}(4y−1)−(−2x+2y−\frac{1}{6})\)
    11. \((2x^{2}−7x+1)+(x^{2}+7x−5)\)
    12. \(6(−2x^{2}+3x−1)+10x^{2}−5x\)
    13. \(−(x^{2}−3x+8)+x^{2}−12\)
    14. \(2(3a−4b)+4(−2a+3b)\)
    15. \(−7(10x−7y)−6(8x+4y)\)
    16. \(10(6x−9)−(80x−35)\)
    17. \(10−5(x^{2}−3x−1)\)
    18. \(4+6(y^{2}−9)\)
    19. \(\frac{3}{4}x−(\frac{1}{2}x^{2}+\frac{2}{3}x−\frac{7}{5})\)
    20. \(−\frac{7}{3}x^{2}+(−\frac{1}{6}x^{2}+7x−1)\)
    21. \((2y^{2}−3y+1)−(5y^{2}+10y−7)\)
    22. \((−10a^{2}−b^{2}+c)+(12a^{2}+b^{2}−4c)\)
    23. \(−4(2x^{2}+3x−2)+5(x^{2}−4x−1)\)
    24. \(2(3x^{2}−7x+1)−3(x^{2}+5x−1)\)
    25. \(x^{2}y+3xy^{2}−(2x^{2}y−xy^{2})\)
    26. \(3(x^{2}y^{2}−12xy)−(7x^{2}y^{2}−20xy+18)\)
    27. \(3−5(ab−3)+2(ba−4)\)
    28. \(−9−2(xy+7)−(yx−1)\)
    29. \(−5(4α−2β+1)+10(α−3β+2)\)
    30. \(\frac{1}{2}(100α^{2}−50αβ+2β^{2})−\frac{1}{5}(50α^{2}+10αβ−5β^{2})\)
    Answer

    1. \(10x−8\)

    3. \(−3x+10\)

    5. \(−x+4y+1\)

    7. \(−\frac{11}{20}x−\frac{1}{6}y\)

    9. \(\frac{5}{3}x−\frac{8}{3}y\)

    11. \(3x^{2}−4\)

    13. \(3x−20\)

    15. \(−118x+25y\)

    17. \(−5x^{2}+15x+15\)

    19. \(−\frac{1}{2}x^{2}+\frac{1}{12}x+\frac{7}{5}\)

    21. \(−3y^{2}−13y+8\)

    23. \(−3x^{2}−32x+3\)

    25. \(−x^{2}y+4xy^{2}\)

    27. \(−3ab+10\)

    29. \(−10α−20β+15\)

    Exercise \(\PageIndex{9}\) Mixed Practice

    Translate the following sentences into algebraic expressions and then simplify.

    1. What is the difference of \(3x−4\) and \(−2x+5\)?
    2. Subtract \(2x−3\) from \(5x+7\).
    3. Subtract \(4x+3\) from twice the quantity \(x−2\).
    4. Subtract three times the quantity \(−x+8\) from \(10x−9\).
    Answer

    1. \(5x-9\)

    3. \(-2x-7\)

    Exercise \(\PageIndex{10}\) Discussion Board Topics

    1. Do we need a distributive property for division, \((a+b)÷c\)? Explain.
    2. Do we need a separate distributive property for three terms, \(a(b+c+d)\)? Explain.
    3. Explain how to subtract one expression from another. Give some examples and demonstrate the importance of the order in which subtraction is performed.
    4. Given the algebraic expression \(8−5(3x+4)\), explain why subtracting \(8−5\) is not the first step.
    5. Can you apply the distributive property to the expression \(5(abc)\)? Explain why or why not and give some examples.
    6. How can you check to see if you have simplified an expression correctly? Give some examples.
    Answer

    1. Answers may vary

    3. Answers may vary

    5. Answers may vary

    2.2: Simplifying Algebraic Expressions (2024)

    FAQs

    How do I simplify algebraic expressions? ›

    Combine like terms, or terms with the same variable part, to simplify expressions. Use the distributive property when multiplying grouped algebraic expressions, \(a(b+c)=ab+ac\). It is a best practice to apply the distributive property only when the expression within the grouping is completely simplified.

    What grade level is simplifying algebraic expressions? ›

    Here you will learn about simplifying expressions, including using the distributive property and combining like terms. Students will first learn about simplifying expressions as part of expressions and equations in 6th grade.

    How do you find the answer to an algebraic expression? ›

    To evaluate an algebraic expression, you have to substitute a number for each variable and perform the arithmetic operations. In the example above, the variable x is equal to 6 since 6 + 6 = 12. If we know the value of our variables, we can replace the variables with their values and then evaluate the expression.

    How do I simplify the expression? ›

    Simplifying expressions mean rewriting the same algebraic expression with no like terms and in a compact manner. To simplify expressions, we combine all the like terms and solve all the given brackets, if any, and then in the simplified expression, we will be only left with unlike terms that cannot be reduced further.

    Does 7th grade do algebra? ›

    In many places it's become a fundamental part of the middle school math curriculum, too. In recent years, more students have begun taking Algebra 1 in eighth or even seventh grade – something that was fairly uncommon just three decades ago, when the vast majority of students were taking it in high school.

    What age is algebra? ›

    Typically, algebra is taught to strong math students in 8th grade and to mainstream math students in 9th grade. In fact, some students are ready for algebra earlier.

    What grade is algebra 2? ›

    Students typically learn Algebra II in 11th grade. An Algebra II curriculum usually builds on knowledge and skills that are gained in Algebra I and reinforced in Geometry, including relationships between quantities through equations and inequalities, graphing of functions, and trigonometry.

    What is an example of an algebraic expression? ›

    An algebraic expression is an expression involving numbers, parentheses, operation signs and pronumerals that becomes a number when numbers are substituted for the pronumerals. For example 2x + 5 is an expression but +) × is not. 3x + 1 = 3 × 2 + 1 = 7 and 5(x2 + 3x) = 5(22 + 3 × 2) = 30.

    What is simplify in math example? ›

    It generally means to write in the minimal form possible. For example, if you have an answer 5/10, you can simplify it to 1/2. Or if you get an answer as x + 4 - 2 you can simplify it to x+2. Or a more complicated x(x+2) - x^2 = x^2 +2x - x^2 = 2x.

    How to solve algebraic expressions step by step? ›

    How to Solve an Algebra Problem
    1. Step 1: Write Down the Problem. ...
    2. Step 2: PEMDAS. ...
    3. Step 3: Solve the Parenthesis. ...
    4. Step 4: Handle the Exponents/ Square Roots. ...
    5. Step 5: Multiply. ...
    6. Step 6: Divide. ...
    7. Step 7: Add/ Subtract (aka, Combine Like Terms) ...
    8. Step 8: Find X by Division.

    What kind of math is algebra? ›

    Algebra is a branch of mathematics that uses mathematical statements to describe relationships between things that vary. These variables include things like the relationship between the supply of an object and its price.

    How to start algebra? ›

    To start learning algebra, you'll need to know basic math skills such as adding, subtracting, multiplying and dividing. This primary/elementary school math is essential before you start learning algebra. If you don't have these skills mastered, it will be tricky to tackle the more complex concepts taught in algebra.

    References

    Top Articles
    new hampshire real estate - craigslist
    How to Get a 720 Credit Score in 6 Months
    Drury Inn & Suites Bowling Green
    Warren Ohio Craigslist
    Cars & Trucks - By Owner near Kissimmee, FL - craigslist
    Fat People Falling Gif
    Northern Whooping Crane Festival highlights conservation and collaboration in Fort Smith, N.W.T. | CBC News
    Craigslist Mexico Cancun
    Roblox Developers’ Journal
    Fnv Turbo
    Milk And Mocha GIFs | GIFDB.com
    Why Is Stemtox So Expensive
    Mens Standard 7 Inch Printed Chappy Swim Trunks, Sardines Peachy
    Viha Email Login
    Foodland Weekly Ad Waxahachie Tx
    Cinebarre Drink Menu
    Bx11
    Is Grande Internet Down In My Area
    Accident On May River Road Today
    Ratchet & Clank Future: Tools of Destruction
    Nsa Panama City Mwr
    Valic Eremit
    Devotion Showtimes Near Regency Buenaventura 6
    Hefkervelt Blog
    1145 Barnett Drive
    Kabob-House-Spokane Photos
    Bleacher Report Philadelphia Flyers
    Kitchen Exhaust Cleaning Companies Clearwater
    Coindraw App
    Harrison 911 Cad Log
    Gridwords Factoring 1 Answers Pdf
    Craigslist Gigs Norfolk
    Gasbuddy Lenoir Nc
    Petsmart Distribution Center Jobs
    CARLY Thank You Notes
    Dallas City Council Agenda
    Heavenly Delusion Gif
    Best Restaurants In Blacksburg
    Radical Red Doc
    Can You Buy Pedialyte On Food Stamps
    Japanese Big Natural Boobs
    Mytime Maple Grove Hospital
    California Craigslist Cars For Sale By Owner
    Perc H965I With Rear Load Bracket
    Sea Guini Dress Code
    Huntsville Body Rubs
    Heat Wave and Summer Temperature Data for Oklahoma City, Oklahoma
    The Plug Las Vegas Dispensary
    Black Adam Showtimes Near Kerasotes Showplace 14
    Aspen.sprout Forum
    Palmyra Authentic Mediterranean Cuisine مطعم أبو سمرة
    Latest Posts
    Article information

    Author: Reed Wilderman

    Last Updated:

    Views: 6399

    Rating: 4.1 / 5 (72 voted)

    Reviews: 87% of readers found this page helpful

    Author information

    Name: Reed Wilderman

    Birthday: 1992-06-14

    Address: 998 Estell Village, Lake Oscarberg, SD 48713-6877

    Phone: +21813267449721

    Job: Technology Engineer

    Hobby: Swimming, Do it yourself, Beekeeping, Lapidary, Cosplaying, Hiking, Graffiti

    Introduction: My name is Reed Wilderman, I am a faithful, bright, lucky, adventurous, lively, rich, vast person who loves writing and wants to share my knowledge and understanding with you.